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Quantum algorithmic integrability: The metaphor of classical polygonal billiards
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We study the algorithmic complexity of motions in classical polygonal billiards, which, as the number of
sides increases, tend to curved billiards, both regular and chaotic. This study unveils the equivalence of this
problem to the procedure of quantization: the average complexity of symbolic trajectories in polygonal bil-
liards features the same scaling relatiéngéth respect to the number of sidethat govern quantum systems
when a semiclassical parameter is varied. Two cases, the polygonal approximations of the circle and of the
stadium, are examined in detail and are presented as paradigms of quantization of integrable and chaotic
systems.

PACS numbd(s): 05.45.Mt, 89.70+c

[. INTRODUCTION its lack. The fact remains that chaos in nature is an undis-
puted reality, quite well described by classical dynamics. In
Chaosis certainly the most significant concept that hasprevious work we have put forward the idea that the gap
issued from the theory of dynamical systems and yet its trubetween the two mechanics, classical and quantum, is wider
meaning, most concisely and universally encompassed in thithan what can be naively expected from the correspondence
equationchaos equals deterministic randomne$®s not  principle, and that the former is more than the limiting case
been fully adopted in the literature and in the scientific com-of the latter[2—6].
munity. This is somehow paradoxical, for even in popular In this paper | shall show that a similar situation is met in
magazines the idea has spread that the discovery of chatse dynamics of purely classical billiards: here, rational po-
might be considered the third scientific revolution of thelygonal billiards play the role of quantum systems, whose
century—after relativity theory and quantum mechanics. In‘classical limit” are curved billiards, to which they tend
my opinion, there are two main reasons behind this failuregeometrically as the number of polygonal sides increases in-
first, the information-theoretical concepts implied in the no-definitely. Indeed, while it has long been recognized that
tion of deterministic randomness are unfamiliar to most sci+ational polygonal billiards are nonchaotic systefiis-11],
entists; second, for the vast majority of physicists the “true” one can use them to approximate chaotic curved billiard
mechanics is not classical—where chaos is commonlyables to arbitrary precision, and ask what happens then to
found—but quantum, where chaos is, quite significantly ashe character of their motion. In addition, the observation has
we know, absent. recently been made of positive “effective” Lyapunov num-
A clash is implied in this last statement: if chaos is absenbers in polygonal billiard$12], and a paradox of the same
in quantum mechanics, should it not be also absent in claftavor as “quantum chaos” seems to arise, where chaos ap-
sical mechanics, which is just the limiting case of thepears and disappears at his wish, like the Cheshire cat.
former? This clash has led people to draw all sorts of con- To resolve this paradox, in this paper | shall introduce an
clusions. Many have claimed that classical chaos must implglementary, physically motivated version of algorithmic
quantum chaos, via theorrespondence principlgl], while  complexity theory. In applying this theory, it will become
others on the same basis have pretended that classical chagsar that the procedure of approximating curved billiards by
theory should be derived from quantum dynamics. Others ygbolygons is quite analogous to that of quantizing classical
have seen in the collapse postulébe any other addition to systems: understanding the complexity of the motion in
Schralinger equation required to make physical predictions polygons can then be used with profit to clarify the issues
the origin of randomness—but randomness alone is ndhvolved in the other, more important problem.
chaos. And on the opposite side of the radical fringe others Our arguments are organized as follows: in the next sec-
have argued that, since chaos is absent in the quantum m#éen we review the fundamentals on integrable and chaotic
chanical theory of nature, it should be absent in nature altobilliards, and the notion ofalgorithmic integrability To
gether, in particular at the macroscopic level, and so farewekdapt algorithmic complexity theory to physical purposes, in
classical chaos. Taken at face value, this last statement insec. lll a simplecoding of trajectories in billiards is intro-
plies a logical inconsistency, for quantum mechanics is just auced, which translates these into symbolic sequences: their
theory, a description of nature. Yet many physicists considealgorithmic complexityis the object of this paper. We at-
it a very good description in all respects, including chaos otribute special importance to tisgalingof this quantity with
respect to time, within certain time intervals: this leads to the
concept ofrandomness (or order) within a rangevhich is
*Electronic address: giorgio@fis.unico.it presented in Sec. IV. Rather than studying orbital complexity
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directly, we define in Sec. V thaverage coding length
which has a clear physical meaning, and can be used to es-
timate the former. The theory is immediately applied to the
case at hand: the circlan integrable systemthe stadiun{a

fully chaotic one, and their rational polygonal approxima-
tions, which by analogy to quantum mechanics we also call
polygonal quantizationsThe case of circle quantizations is
studied in Sec. VI, where the paradox presented above is
resolved. The stadium billiard is put to the same test in Sec.
VII, and the problem ofcorrespondencés addressed. This
finally prompts the conclusions, where the position of Chir-
ikov in this debate is briefly reviewed9.

FIG. 1. The initial portions of two trajectories in a circular bil-
liard table, characterized by slightly different initial anglgsTheir
common initial position is at the bottom of the table. Also shown is

Billiards are dynamical systems that require little intro- & coding of rebounds with two symbols=0 (light portion of the

duction, and just a few formal definitions are necessary. Aoundary ando=1 (dark portion.
billiard table Bis a bounded, connected domain of the plane,
with piecewise smooth boundary. Adeal billiard in Biis  has taken place: while the ergodic hierarchy is concerned
the dynamical system originating from the uniform motion with statistical properties of ensembles of orbits, algorithmic
of a point particle—a ball—insid8, with elastic reflections  theory deals with a new object, the complexity of the de-
at the boundary, following the familiar law that the angle of scription of the motion, which will be the basis of our inves-
incidence equals angles of reflection. _ N tigation [17].
~ In many games that can be played with a billiard, atten- = geminal work{ 18] on A-integrable billiards is Zemlyakov
tion is paid tq such r(_eflectlons: one discretizes tlmmg IN- " and Katok's[8] study of polygons whose vertex angles are
tegern meaning the time of thath rebo_un()l and.con3|der.s all rational multiples of: it shows that these billiards sat-
the subses of the tangent space H which co_ns_lsts_ of_unlt isfy the conditions for integrability except for the effect of
\égﬁtzraséi?ttgghesr::ng?rlijzng; rg/ pt(r):gts ;Pq% ps\;ﬂg?gl Iirf;ﬁi vertices. Rationality of the angles provides a second constant
arc Iengt% alor?g the boundar);/ ardxfis thé angle between .Of the moti(_)n (the angle Of TEHECtiOW’ tim_es a su?table
the unit vector and the innér normal to the boundary,'meger multlp!e ofr), butsplitting o_f trajectories heading on
—m/2<¢$<m/2. In so doing, the dynamics is a functidn a verte>§ prqwdes therror [19] Wh'Ch. prevents the system
from S to itself, that maps the bounce occurring at, with from being mtegrable. Notvynhstandmg these errors, trajec-
“exit gl g into the new colision point, and exit - BEE T8 CRCRO o s way that the. number of
angledy: informational bits in the outputthe trajectory is much

_ greater than the number of informational bits in the input
(o2 @0) =Tl n-2)- @ (the algorithm plus the initial condition of the motipn
Echardtet al. in [7] call such trajectories algorithmically

—cospdl de, billiards are among the simplest and most Suc_meaningful. ThereforeA-integrable systems are computa-

cessful examples of Hamiltonian dynamics. But perhaps the?Onally akin to Liouville-Amol'd (L-A) integrable ones
mostly owe their success to the fact that a member of theif20,21. We shall come back to these concepts later.
family can be found at virtually all levels in the famous A few years after Refl7] Vega, Uzer, and Ford returned
ergodic hierarchy: there are integrable ones—the circle—at the theme of rational billiards, presenting a seemingly dif-
well asKk—the stadium, which is therefore also ergodic, andferent set of conclusionsl2]: they examined the rate of di-
mixing. Gallavotti and Ornstein have shoWh3] that bil-  vergence of nearby trajectories and found that this rate is
liards can also be Bernoulli, and Ornstein and W¢is4]  exponential, even for rational billiards. The key factor in
have conjectured that chaos in nature is mostly of this typetheir derivation is the fact that nearby trajectories differ at
not without reason, we can say that billiards have served ttime zero by a finite, fixed amount, and they are reinitialized
shape our view of reality. In a sense, the present paper ainte this fixed amount at each iteration of the Benettin-Strelcyn
at the same ambitious goal. algorithm for computing Lyapunov numbers. In the mind of
An interesting subclass will be studied here, which coverghese authors, this upper bound to precision stands for the
part of the ergodic hierarchy, but falls short of producinghuman limitation to the dogma of infinite precision. If we
chaotic representatives: the polygonal billiafd®]. Sinai  take this limitation into account, they claim, trajectories ef-
has indeed provef9] that these billiards have null metric fectively live on a multisheeted surface to which splitting at
entropy, and Ford has termed polygonal billiards with ratio-rational vertices gives an average negative curvature: the re-
nal angles algorithmically integrabl@) [15], where the let-  sulting motion is, practically speaking, chaotic.
ter A was also intended to honor the memory of V. M. Alek-  The first aim of this paper is to put order in these conflict-
seev and his work16] in which orbits of null entropy sys- ing observations, by utilizing a scaling approach to algorith-
tems are shown to have null algorithmic complexity also.mic complexity theory. But first, let us define the rules of our
The terminology makes it evident that a shift in perspectivegame.

II. ORDER, CHAOS, AND COMPLEXITY IN BILLIARDS

Since this mapping preserves the canonical meadure
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are recorded. Let us now ask the player to do it twice, that is,
to aim the ball a second time so that the sequence of bounces
obtained in the first shot is repeat€@4]. It comes as no
surprise that the player will not be able to set the initial angle
~ ¢ to exactly the same value in both tries: the difference in
this quantity causes the two resulting symbolic trajectories to
agree only over a finite time-span. Trajectories of this kind
are pictured in Figs. 1 and 2. But how is this sport related to
algorithmic complexity and to our problem?

cs’/Q IV. DETERMINISTIC RANDOMNESS

OF FINITE TRAJECTORIES

FIG. 2. Same as Fig. 1, now for the quarter stadium billiard
table studied in this paper. Notice that rebounds are coded only on The symbolic coding just described has reduced any finite

the circular part of the boundary, =0 (light thick portion of the  trajectory into a sequence of symbals, ... ,0, and the
boundary and byo=1 (dark thick portion. billiard game can be thought of as a computer program de-
signed to output this sequence. Of course, this computer pro-
lll. SYMBOLIC SEQUENCES IN BILLIARDS: A GAME gram can also be translated into a sequence of bits,

The billiard in a circle(Fig. 1 is a noticeable example of PL-.- ',;er-OTP;mrSe'fg'?r?ebgt)".":;”o? gf’%‘ﬁﬁﬁﬁﬁcaggnfslegﬁ”'
Liouville-Arnol’d integrability: the second, smooth integral 9 prog ) 9 piexity

of the motion being the angular momentum with respect totheory. In fact, the_algor_|thm|c complexit{(N) of a se-
n Is defined very roughly as the length of

the center. Cutting the circle into two equal pieces and in-quem:e{ai}i:1 -----

serting a rectangular strip between the two halves gives risg1e shortest computer program capable of outputting the se-

to a fully chaotic billiard: the stadiurf22]. We shall get rid quence, anq stopping afterwei#5,26. Since this program
of all symmetries in this geometrical figure, and study theunlquely defines its output, we can say that the complexity of

quarter stadium(Fig. 2). Let us now replace the circular a sequence is the length of its shortest definition:
sides in both billiards by a polygonal approximation with

equal sides: it is apparent that this can be done so as to form
a rational billiard. In both these cases, Vega, Uzer, and Ford

[12] have found exponentially divergent trajectories, within Algorithmic complexity theory teaches us that most
their approximation scheme of course. In the following, | sequences—in a probabilistic sense—of lerigthave com-
shall show that the two cases are nonetheless prOfOUndMexity close to maximal, i.eN. Moreover, in the limit of
different. To do this, | first need to introduce a symbolic increasingN, almost all of them are random, in the sense that
coding of this problem. their complexityK (N) grows asN [27]. At the same time,

How to code a dynamical object into a symbolic sequencgomputable sequences exist, for whikiiN) is much less
is some_thing that follows fr_om ph_ysical insight, or practical thanN, and grows less than linearly. Whenis generated by
convenience, or mathematical efficd@g]. In our case, we 3 gynamical system, as in our case, we shall follow Alekseev
elect to code trajectories according to th(_a bounce coordinatgyg Yakobsori16], Chirikov et al.[28], and Ford[29], and
| alone: for this, we assume that the circular parts of thggentify order with computability and chaoswith random-
boundary (or their polygonal approximationsare divided pesswhence the definition put forward in the Introduction.
into a finite numbess of equal regions, each of which corre- | et us return now to our billiard problem, and study the
sponds to a symbal which can be. taken to be a natural complexity K(N,¢) of its dynamical sequencd80]. We
number from 0 tcS5—1. We also decide that bounces on the haye explicitly indicated that complexity may depend on the
straight segments of the stadium are not registered. This Coghjtial condition of the motion, the angké. The central issue
ing is indicated in Figs. 1 and 2, f@=2. For simplicity, we  js then to find an optimal computer code to output the speci-
shall always present the results 182 in this paper, al-  fied sequence. A possible candidate is obtained—in any ab-
though in the Appendix the general case is considered.  stract language—by an encoding(af the geometrical rules

In a billiard table like thiS, we may think of puttlng de- of the game, which requires a fixed number of tmt%achine
tectors all around the boundaries, which are set off whenevgiyhich depends only on the machine on which the rules are
the ball hits them. In the polygons, nearby sides can be concoded; (b) the instructions set for fixing the billiard bound-
nected to the same detector, so that the total number of OUfrries, of coding lengtiCpoundar; (C) the number of rebounds
put channels isS also whenM—the number of sides—is N; and(d) a certain number of digits ap. Accordingly, the
much larger tharg and is allowed to increase while keeping lengthL(N, ¢) of this program can be estimated as
S fixed as we shall do in the following. The history of a
trajectory is then coded in the recoed o, ... of bound- L(N, #)=Cachine™ Cooundaryt 1092 N+ A(N,¢), (3
ary reflections.

Now, let us play a game: the ball is initially set still at a where the functiom\ (N, ¢) is defined as theumber of bits
fixed point, and a test player—chosen appropriately amongf ¢ necessary and sufficient to determine the first N symbols
our friends—can aim it by hitting it properly with the famil- in the sequence-.
iar cue. As the departing angte is varied different trajec- The functionA (N, ¢) can serve to estimate the complex-
tories are initiated, and different symbolic sequentes ity K(N,¢) in its most relevant aspect: th¢ dependence.

outputs

P1,-..,pL = 01, ...,0y iMmplies K(N)<L. (2



PRE 61 QUANTUM ALGORITHMIC INTEGRABILITY: THE.. .. 6437

40

FIG. 3. Coding lengtiN(A,¢) vs ¢ for an
octagonal billiard, withS=8. The starting point
is at the center of one of the sides. Two values of
& are useds =0.01(bottom continuous lineand
£=0.005(top broken ling. The arrows mark the
values¢, and ¢, described in the text.

On the one hand, it is clear that any computer progranwfor nificant to study thenversefunction of A(N,¢), that is,
must include this contribution; on the other hand, this func-N(A, ¢), which certainly exists, forA is a nondecreasing
tion features the most relevaNtdependence in Eq3), and  function of N.
serves therefore to discriminate between order and chaos. In This function quantifies the numb#tof symbolso; that
fact, when in a range of sequence lengfh<N<N, the can be predicted knowing the first digits of the binary
function A(N,¢) grows linearly, A(N,#)~XN, the com- expansion of ¢. It is clear that the computability or
plexity K(N, ¢) has the same leading behavior, and the serandomness—hence the order or chaos—of a dynamical se-
quence{o;j} should duly be termed random, or chaotic. quence can also be inferred from the studyNgf\,¢) and,
When, in a similar interval A(N,¢) grows less than lin- at this level, nothing has been lost by adopting this new
early, {oj} should be called computable, or ordered. Wedefinition. Moreover, the new function has a transparent
therefore introduce the notion of ordéand randomnegs physical meaning: if we let:=2~*, in this new independent
within a range. The physical significance of such or@®r ariable the functio(e,$):=N(—log, &,4) can be called
randomnesswill then be proportional to the importance of he |ength of the codable trajectory undercertaintye .
such range. . ) ] Let us go back to our example. The player is capable of
We have emphasized this scaling approacfBirto rebut  setting the angles only with a certain erroe.. Under these
a common objection to the application of complexity theoryjrcymstances, only finitely many dynamical symbols will
to finite dynamical sequencg81]. The rationale behind our typically coincide in the initial portions of the symbolic se-
idea is evident and is quite similar to that adopted in thegyencesr ando’ of two independent shots—their number is

independent theory of computational time complexity: not SON(A, ) in other wordsN(A, ) is the smallest integek
much the value of complexity is relevant, but the way it such thato; =

increases as the problem size grows, for this may render it
quickly unfeasible. In fact, there is no point in practicing for
our billiard player if he is playing a chaotic billiard: for each
additional bounce he wants to set correctly, his aiming pre
cision in the initial angle¢ must increase geometrically.

Leaving the metaphor, when the role of the billiard is playe ; i . S

by a system whose symbolic dynamics we want to predict, t&ieta" (see ;E_he aAppendl)f andfbelgwlt 'f plotted n F_|g. 3f
obtain a linear increase in forecast precision we must expo\frsu.s‘lsI atiixe ulncertalnt)g, <|3rbt.”_el\/‘lj—8 quz:)ntlzatlonrc])
nentially increase the accuracy in the initial conditigag]. ~ '€ circle (a regular octagonal billiayd One observes that

In most instances this demands an exponential increase B}W value_s, like that seen @tl.’ are associated with trajecto-
resources ries heading very early in history toward a vertex, where a

symbolic error may occuf7,34]. Large values oN(A, ¢)
are found when this happens much laté is associated
with a periodic trajectory that stays far away from the verti-
The algorithmic theory explained so far rests on the quesces[35].
tion, “How many bits of information do | need to describe a It can be shown that the behavior Nfat the periodicity
symbolic sequence?” The answer is mostly given by thevalues is at the root of the dynamical properties of the sys-
function A.. Clearly, this theory is in line with common usage tem. In fact, let the ideal, frictionless ball run for an infinite
in dynamical systems, and the lett&rcan be thought of as time. A coding functionF of the initial angle¢ can be de-
the L in Lyapunov. Yet we now pretend that this theory is fined asF(¢)=3{_;0;S ). This function represents the
still inadequate for physical purposes. In fact, if we are totranslation dictionary between the trivial codhe infinite
describe a world under finite precision, it is then more sig-sequence of digits ap), and the dynamical cod¢he infinite

Oly oo O = O, Oy 17 Oy -

Following [34] we also say thaN(e,¢) (plus 1) is the
first error timg when the information onp is no longer
sufficient to computdi.e., forecastthe symbolic sequence.
This function is rather straightforward to compute numeri-
dcally, and its theoretical analysis can be carried out in full

V. CODING UNDER FINITE PRECISION
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sequences of boungedn chaotic systems, like the motion 10°
over surfaces of constant negative curvature and the aniso-
tropic Kepler problem, the relation between the properties of
N and the functionF can be fully exposed. This relation
justifies the multifractal properties of the coding functien
which were originally investigated by Gutzwiller and Man-
delbrot[36,37]. We defer the study dof (¢) to further pub-
lications. 10
Let us consider Fig. 3 again. In players’ terms, the angle O
¢, is an easy shot ang@, a tough one. Recall now that we f
are not in a position to specif$ exactly: we find it neces-
sary, and convenient, to average over initial angles, so defin-
ing the average coding lengfh(e):

10
A):= [ N(-log e, ¢)cosgd, @
which WI!| become our main indicator of the complexity of 1005 707 10° 100 10¢ 100 102 1ot
the motion. The fundamental question now becomes €
(roughly): “How many symbols can | compute on average
with N= —log, & bits of program?” FIG. 4. Average coding length(e) vs ¢ with S=2 for the

A canonical average over the full phase space can also tfél’de (hearts and its polygonal quantizations. The number of sides
defined and computed, with quantitatively similar results to®f M is chosen to be twice a prime, in a roughly geometrically
those we are going to describe. Let us pause no more, arfcreasing sequencevl =62 (open circles M =134 (open tri-
compare the behavior of this quantity in the circular billiard, @"9!e3, M=254 (open squargs M =514 (open diamonds M

; ; ; : =1042(filled circles, M = 2062 (filled triangles, M = 4106 (filled
the stadium, and their polygonal approximations. i : ' SO
Polyg P squarey M =8198 (filled diamond$. The continuous line is the

second formula in Eq5) with M =62.
VI. ORBITAL COMPLEXITY IN INTEGRABLE

AND POLYGONAL BILLIARDS

To draw a parallel with quantum mechan|[&3] suppose
now that nature, by means of our observations, clearly showsather than vanish. Moreover, this discrepancy is brought
that curved billiard boundaries are a mathematical idealizaabout by a decreasingy(e). Recall thatAy(e) is the av-
tion and that physically we can just have polygonal billiardserage of the inverse function df(N,¢) (if you rotate the
with an arbitrary but finite number of sidelsl. These sides graph clockwise by 90°N appears plotted on the horizontal
will be inscribed in the circle and in the stadium, and | shallaxis ande =2~*() on the vertical: in this region the com-
call the resulting polygonal billiards a quantization of the plexity of a trajectory of fixed lengthl=A,, grows whenM
curved ones. In this context#] is a crucial quantity, which is increased. This is the phenomenon observed by Vega,
plays the role of a semiclassical parameter. Clearly, when welzer, and Ford: polygonal billiards have their own brand of
let M go to infinity we regain geometrically the original instability, generated by splitting of trajectories at vertices.
table. The question is, will we obtain the same kind of dy-The more vertices, the larger the Lyapunov numbers com-
namics? puted in[12]. The paradox presented in Sec. Il is thus dem-

We start now to answer this question in the case of thenstrated.
circle and its polygonal quantizations: the stadium will be  But we are now equipped to resolve it. Observe first that
treated in the next section. Before resorting to exact analysishe increase in complexity obtained by raisicat fixede is
let us have a look at the numerical data. Figure 4 reports thenly temporary; if we keep going, we find tha,,(¢)
average coding lengtAy,(e) of a regularM-gon versuse, reaches a minimum, and then inverts its course to reach
for various values oM. The scale is doubly logarithmic: quickly (we shall come back to the rate of this convergence
according to Eq(3) the power-law behavior of these curves later on the circle valueA e [38].
for smalle is a manifestation of the ordered character of the Furthermore, a deeper argument must be made: remaining
motion, which is well assessed in the literat(ige7,16. at fixede is not a proper thing to do, not even in the presence

Yet the physical picture evident in Fig. 4 is much richer. of human limitations to finite precision. In fact, we cannot
First, asM grows at fixed(large &, Ay(e) tends to the increase precisiomdefinitely but we certainly can over a
coding function for the exact circular billiard, the earlier the finite, physically reasonable range. For instance, this may be
larger the value ot. This is easy to understand: at large dictated by the computational power of the machine on
the coding length is short, and differences between polygonabhich Fig. 4 has been computed. Exploring this range, from
boundaries with larg&! and the circle are not significant.  larger to smaller uncertainties, we discover tAgf(e) starts

If we turn our attention now to the left part of Fig. 4, off like the L-A integrable circle,Agge(e)~¢~ Y% then
where relatively smaller values ef are plotted, a less ex- “feels” the effect of vertices, and successively redirects its
pected phenomenon appears: with increadraf fixede the  course on a different line, with the same exponent: a transi-
difference betweermAy(e) and Agqe(¢) seems to grow tion from L-A to A integrability has taken place.
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These numerical observations can be derived in full detail 10*
from the analysis developed in the Appendix. We are able to 5
prove that the average coding length is given by

T 1
> 5o for Me>H
V2e
An(e)= L )
a
= for Me<H,
2 /Mg

where the crucial functional dependenceMrand ¢ is ap-
parent, and wherkl is a constant, which plays a similar role
to Planck’s constant in the “usual” quantum mechanics.

In the above equation, the first behavior coincides with
the result we find for the circular billiard:

Agircie( 8) = (6)

T 1
2 \2¢’
so that at fixed: we have limy,_,.. Ay (&) =Agirge(€)- This is

clearly a form of correspondence, to the relevance of which FIG. 5. Average coding lengthy(e) vs e for the quarter sta-
we shall return in the next section. dium (filled triangles and its polygonal quantizations, with=2.

The average coding length computed in the second®q. The values ofM are powers of 2:M =128 (open circles M

and in Eq.(6) leads to an estimate for the average complex-— 212 (Open trianglels M =2048 (open squargs M =8192 (open

. L . . . e diamonds, M =32 768(filled circles. The solid and dotted curves
ity Whlch_lncreasgs _only logarithmically witN andM: first, are given in Eq(9) with M= and M =128, respectively, an€
the functionA satisfies

=-1.731,D=0.831,p=1.78.

A(N)=<C+2log, N+log, M, (7)

. N _ acter of this curve clearly reveals that the complexity of tra-
whereC is a positive constant independentMfandN, and  jectories grows linearly with length: chaos is here manifest in
where M=2 must be set for the circular billiard, which jts essence. For large valuesME, Ay () is approximately
therefore turns out to be the simplest member in the familyequal to Agugun(e). For instance, over the interval
as it should. Following suit, from Eq$3) and(7) one ob-  (1075,10"2), the coding lengti\s,76sis a logarithmic func-
tains[39] that the average program length is tion of e. We can therefore expect that a corresponding range

, in N exists so that the average complextyN) grows lin-
L(N)=<C’"+3log, N+2log, M, ®) early in N: here, trajectories are random, in the sense ex-

whereC'’ is another positive constant. This result should bePained in Sec. V. Notice that the existence of this range is
compared with the existing literature on ttepologicalcom- whqt permits sens_lble numerical experiments of chaotic
plexity of symbolic dynamic$40]. motion on finite digital computers. . o

In conclusion, we see that vertices add logarithmically to The effect of vertices noticed n the circle quantization
the complexity, but only as long aMls<H, i.e., logv (Sec. V) appears again when following the curvgg(e) to

<logH+A. We have thus reconciled the observation of Ref ("€ 1€ft, as they leavB.iu{e) staying slightly lower than

‘ e this latter, i.e., showing a relative increase in the complexity
12] and the established knowledge on polygonal billiards.
L12] g PoYY f the motion. As before, this increase is quantified by the

We can now turn to a more delicate problem: what happen - > F )
ogarithmic contribution logv. Alas, this excess of zeal rap-

to orbital complexity in the polygonal approximations of a
chaotic biIIiard? y el PP idly turns into failure: the algorithmic simplicity of the mo-

tion within polygonal boundaries is soon detected, and
Ay (e) starts to grow likes =2 What has happened is that
the complexity estimaté?), previously dominated by that of
the curved stadium, takes over for good.

In the previous section we have established that rational An exact analysis can be performed here (see the Ap-
approximations of the circle cannot be called chaotic, nopendix, showing that the average coding length satisfies
even under the assumption of finite precision. Is this achieve-
ment possible to their more sophisticated relatives, those in-
scribed in the stadium? After all, & tends to infinity, these

VIl. ORBITAL COMPLEXITY IN CHAOTIC BILLIARDS
AND CORRESPONDENCE

C—Dloge for Me>H

billiards tend to a fully chaotic system, am@he thing is Apy(e)=q m 1 9
certain, the correspondence principle must be obdyiil 2 JoMe for Me<H,

Figure 5 is the analog of Fig. 4, now for the quarter sta-
dium billiard table. Differences and similarities between the
two are evident: whileAy (&) is ultimately a power law in  whereC, D, p, andH are suitable constants, the last playing
both casesAg.qur{€) IS never such. The logarithmic char- the same role as in the previous section. Consequently, in the
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regionMe<<H complexity estimates of the forifr) and(8) complete characterization, in all ranges of parameters, of the
still apply, and the motion is clearly ordered in this regime. dynamical properties of the families of billiards studied in

The end of this paper is in sight, and we must start drawthis paper. We have thus discovered that even under the as-
ing conclusions. There is a significant difference between theumption of finite precision measurements the motion in po-
case of the circl¢Fig. 4 and Eq(5)] and that of the stadium |ygonal billiards is to be considered mostly ordered: the ef-
quantization[Fig. 5 and Eq.(9)]: while the former, as we fect of vertices can be quantified by a logarithmic
noted, shows a transition from L-A to A integrability, the contribution to the average algorithmic complexity of sym-
second matcheé integrability with chaos, and this mating is pjic trajectories.

troublesome, to say the least. Perhaps the most evident con- gince our technique is based on a very general theory

sequence is the following. Let me ask how long a symbolicy 44 ithmic complexity, and on a basic assumption about the
sequence must be to perceive the finiteness of the number

: S o . . fihite precision of our measurements, which can also be used
bound'ary sides via its algorithmic ma“'fes“%“or?s- The anys a testing hypothesis in “exact” situations, we believe that
SWer 1s instructive. "? the polygonal qL_JanUzanon of the it is well suited to treat the general case of the approximation
cwcje, and of th'e stadium as w'ell,. the critical valuesofit of a complex theory by a sequence of simpler descriptions,
which the func_tlor_1$AM and th_ew limitsAcircle and Astagium — \ith results that we expect to be fairly similar to those pre-
start to differ significantly(call it ¢),) scales agy~H/M.

h ) he diff £t bsented in this papdi5]. In fact, the algorithmic estimates
Yet, at the same time, the different structure of the two probyeiyeq in this paper are manifestations of the same phenom-
lems implies that the length of polygonal-curved accordanc

: k , i ®non observed in the Schfinger quantization of the
is proportional toyM in the integrable case and only to the Arnold cat [47,2,3,9 [see Eqs(8) and (9) of Ref. [3]] and
logarithm ofM for the chaotic stadiurfd4]. of bounded systemigt], in the sequence of energy levels of
~ Of course, as in the previous section, we observe that ghtegrable and non-integrable Hamiltonidds], and also in
fixed £ the sequenceéy(e) tends to the curved billiard he classical dynamics of discrete systefsse Sec. IV of

value Agiagiunf &), when the number of sided tends to in-  Ref [34]). Truly then, the nature of chaos and order is infor-
finity. This is certainly a form of correspondence. Nonethe-mation content.

less, according to the reasoning of Sec. IV, what is important Yet, if we admit this, we must be prepared to bear the
is the _scaling of complexity with respect to the length Ofponsequences when going back to the problem of quantum
dyr_lamlc_al sequences, _and the rele_ve_mce O_f the range {echanics: the metaphor of rational billiards used here per-
which this scaling is validated. But this is precisely what wenits ys to understand the claim that the correspondence prin-
have just computed. Therefore, we are inevitably led to thgjpje is validated for integrable systems and violated for cha-
conclusion that the range of correspondence inNhguan-  otic ones. It was shown in the last section, in fact, that in the
tization of the stadium is negligibly small, in phyS|caI. terms. first case a discrete nature—in which only polygons are
It would look rather awkward now to try to avoid this gjjowed—would let us play with our curved theoretical mod-
con.clusmn by clmgmg to the weak form of corre;pondenceds for a long time. For the same reason, in the quantum
at fixede and appealing to the perused observation that thghechanics of an integrable system, the action of increasing a
“classical limit (here, M—c) and the infinite-time limit  semiclassical parameter draws complexity from a reservoir
(here, e—0) do not commute.” This is irrelevanrecall  that keeps up with the classical description for a time span
note[31]): chaos can and must be detected over finite timenat grows appreciably, as a power law, in this parameter. In
scales of physical relevance, and over these time scales Wge second case, on the contrary, the time of chaotic freedom
can perceive the inadequacy of polygonal billiards to deis |ogarithmically short, and the essence of correspondence
scribe the richness of motions in the stadi(#)]. o to regain classical/curved complexity by quantum/polygonal
These results have been obtained by the explicit calculacomputations is exponentially remote in the semiclassical pa-
tion reported in the Appendix. Yet | believe that their truestrameter{46].
meaning lies within their algorithmic nature: in a sense, they |n the end, what we have rediscovered might even seem
could not have been different, given the premises. In fact, Weyjyjal: the correspondence principle demands that classical
mUSt realize that bOth circle and stadium polygonal quanti'objects be “Computed” quantum mechanica”y_this is cer-
zations are dynamical systems endowed with an amount @hinly possible, as we have seen in the metaphor of classical
complexity which scales as the logarithm M Yet, while piljiards. The point is that for most classical objects this
the M-circle dynamics unfolds this complexity slowly, at a computation is unfeasible, in the algorithmic sense explained
logarithmic pace, it3Vl-stadium relative does it eagerly, lin- jn this paper. In a sentence: quantum dynamics is a comput-
early in time, so that the complexity reservoir is quickly aple theory[49] and can “correspond’[50] to the uncom-
exhausted. | shall now briefly present my views on the physinytable classical mechanics only as far as its algorithmically

cal implications of these facts. simple nature allows if51].
Notwithstanding this evidence, people have been reluctant
VIIl. CONCLUSIONS: CHAOS IN NATURE, ior a long time to admit that there is not such a thing as
IS THERE ANY? guantum chaos,” or that this chaos is something different

from, and less than, deterministic randomness. This hin-
Algorithmic complexity theory, used here in a physicist’s drance is now history. On the contrary, Chirikov has appre-
fashion via the concept of average coding length, clarifies theiated this fact since the very beginning, and his notions of
simplicity of the dynamics of polygonal billiards, and offers transient chaog28] and pseudochad$2,53 show this very
a solution of the paradox that arises from the juxtaposition otlearly. Moreover, he has put a strong emphasis on this latter
Refs.[7] and[12]. At the same time, this theory provides a concept: largely simplifying, but | believe appropriately, one
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could say that Chirikov views the pseudochétismt we call T 1 1
A integrability) of discrete system@nd as a consequence of Acirciel €)= 5 S "e 5 (A1)
digital computers as welhs a faithful representation of what

takes place in quantum mechan[&] and in nature, at all \yhich accurately reproduces the behavior found numerically
levels[55]. At this very last point we part company: in fact, jn sec. VI, both in the exponent and in the prefactor.
an unsettled debaf56,57 still holds on the meaning and  Eor the stadium, one can simply invoke the positivity of
validity of the correspondence principle and on the relateqne | yapunov exponent, which implies that the transverse
and more crucial question of whether quantAnntegrabil-  gimensjons of a beam of trajectories grows on average geo-
ity is enough to cope with a world in which chaos seems tometrically in the number of bounces(n)~ constx A "¢,
be essential. In my work with Ford a negative answer to thi,nere the constany takes into account the average time
question has been presented, suggesting that in this sensgpsed between two coded bounces. Under these circum-
quantum dynamics is incomplete. . stances, we do not need a detailed analysis as in the circular
_Certainly, classical mechanics is inadequate to describgzse phut we can safely assume that for the large majority of
microscopic reality, but it contains the gene of noncomputy;tig| angles the first symbolic error occurs whén) is of

ability, which we believe should be present in a completeq order of the length of boundary partitiors,. We there-
theory of nature; at the same time, the more fundamentgy o opiain

guantum mechanics inherited this gene in too tame a form to

be effective. This isjn nuce the point of contention. Will Agtagiuni €)=C—D log(Se), (A2)

time settle the matter—or will it be that the general indeter-

minacy principle foreseen by Fol&8] will change every- whereC andD are constants.

thing around? Surprisingly, the same dependence of the average cod-
ing length found for the circle can be shown to hold for the
polygonal billiards considered in this paper. The presence of
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discussions and confrontations between him, the present a erved, and its transverse d|m§an3|on grows '".“?a”y In time
average, exactly as it does in the circular billiard. To the

thor, and Joseph Ford, this paper would have never beel! S .
written contrary, when the beam impinges on a vertex of amplitude

«a, its angular amplitude is increased by the amount 2(
—a). In the polygonal approximations of the circle, we have
APPENDIX: AVERAGE FIRST ERROR a’:(l—Z/M)’JT, while a’:(l—1/2|\/|)7T holds for the quar-
TIME CALCULATION ter stadium, so thad&(MC) :=47/M is the resulting perturbation

o ) in the circular case, an¢(,\j) :=7/M in the quarter stadium.
We shall now justify the formulas presented in Secs. VI 1, regimes must now be considered. Wheis much

and VIl via a direct calculation of the average coding Iength/|arger thang,, , the effect of vertices is negligible, trajecto-
first error timeA(e). First, let us consider the case of the ries behave as in the corresponding curved billiards, and
(integrable circular billiard. The angleb is a constant of the Au(e) coincides to a good approximation with Eq#1)
motion: letting w:=m—2¢ the motion isl,=I,_;+ o, the 44 (A2).

usual ergodidfor irrational w/ ) rotation of the circle. Tra- In the opposite regime, whed,, is much larger tham,
jectories with different initial anglep separate at a linear jnninging on a vertex causes a major enlargement of the
speed 2, wheres has the same meaning as in the main bodyheam We can assume that this leads almost immediately to
of the paper. Consequently, a bunch of trajectories 0pens Up, error: a similar analysis to that performed in the circular
linearly in time like a slightly unfocused light beafsee Fig. case can then be carried out. We &t=2x/M be the ap-

1). An error occurs when a boundary point of the circle par-yroyimate length of the polygonal sides: this quantity plays
tition that determines the coding enters this light cone. Let Ug,or6 the same role that, did above. The result is then
now estimate the average time required for this to happen.

Let Sbe the number of cells of the partition of the bound- T
ary, and 85:=27/S their common length. Let alsd, An(e)= EMfllzsfm, (A3)
:=l,modédg, n=1,2,... .According to what we have just
said, an error occurs when the anglg of the reference for the M-circle, and

trajectory(the center of the beancomes withimz/2 of zero

or 1, wheree :=(4/65)e. Let p,(e) be the probability that the A _r —12)\ ~ 12, 112 Ad
first error occurs at timenr. Ergodicity implies thatp,(e) u(e) 4? © A4

=. Certain approximations are required to evaluatefor i )
for the M-stadium, where is a parameter that measures the

n>1: we assume thaf6,}, n=1,2,..., areuncorrelated ; : ;

. ~ o1 o~ . effective length of trajectories between two coded bounces.
random variables, so thah(e)=nellj_;(1-je). Estimat- Finally, the intermediate region between the two regimes
ing then the asymptotic(small &) behavior of A(¢) s determined by the conditiomy,~¢ described above,
=3pnpy(e) by standard techniques givesA(e)  which becomes the “indeterminacy principleMe~H,
=m/2e Y2, and therefore whereH is a constant.
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